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The International Committee on Nomenclature of the International Society for Chronobiology (ISC) in 1977 formally
adopted the definition «chronobiology» as «Chronobiology: science objectively quantifying and investigating mechanisms
of biologic time structure, including rhythmic manifestations of life». It also adopted the definition of «circadian» as
«Circadian: relating to biologic variations or rhythms with a frequency of 1 cycle in 24±4 hours; circa (about, approxi�
mately) and dies (day or 24 hours). Note: term describes rhythms with an about 24�hour cycle length, whether they are fre�
quency�synchronized with (acceptable) environmental schedules (24�hour periodic or other) or are desynchronized or
free�running from the local environmental time scale, with periods of slightly yet consistently different from 24 hours»
[Chronobiologia 1977; 4 (Suppl. 1), 189 pp.]. The beginnings of chronobiology as a discipline in its own right are recounted,
with emphasis on the critical role played by Franz Halberg to provide all the needed ingredients for the new science to
develop and strive, from gathering a critical mass of data in cooperation with colleagues worldwide to developing inferen�
tial statistical methods for their analysis and interpretation. By unveiling lawful variations within the physiological range,
Halberg's clear vision that they have far�reaching implications for health and disease has been vindicated, now that a mol�
ecular mechanism of circadian rhythms has been documented and the role played by the suprachiasmatic nuclei and clock
genes in the periphery continues to be better understood. Chronobiology, however, encompasses more than just circadian
rhythms. Evidence is presented herein for the endogenicity of the about�weekly (circaseptan) rhythm, documented in uni�
cells and early in human life. How they can be used to further optimize treatment timing is illustrated in a few examples,
notably in relation to cancer.
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Международный комитет по номенклатуре Международного общества хронобиологии (ISC) в 1977 году официаль�
но принял определение «хронобиология» как «Хронобиология: наука, объективно количественно оценивающая и
исследующая механизмы биологической структуры времени, включая ритмические проявления жизни». Она так�
же приняла определение термина «циркадный» как «Циркадный: относящийся к биологическим вариациям или
ритмам с частотой 1 цикл в 24±4 часа; circa (около, приблизительно) и dies (день или 24 часа)». Примечание: термин
описывает ритмы с длиной цикла около 24 часов, независимо от того, являются ли они частотно�синхронизирован�
ными с (приемлемыми) экологическими расписаниями (24�часовыми периодическими или другими) или десин�
хронизированными или свободно протекающими от местной экологической шкалы времени, с периодами, слегка,
но последовательно отличающимися от 24 часов» [Chronobiologia 1977; 4 (Suppl. 1), 189 pp.]. Рассказывается о зарож�
дении хронобиологии как самостоятельной дисциплины с акцентом на ведущую роль Франца Хальберга, который
обеспечил все необходимые компоненты для развития новой науки, начиная со сбора критической массы данных
в сотрудничестве с коллегами по всему миру и заканчивая разработкой инференциальных статистических методов
для их анализа и интерпретации. Открыв закономерные колебания в пределах физиологического диапазона, Хал�
берг ясно представил, что они имеют далеко идущие последствия для здоровья и болезни, и теперь, когда молеку�
лярный механизм циркадных ритмов задокументирован, а роль, которую играют супрахиазматические ядра и ге�
ны часов на периферии, тщетельно исследована. Хронобиология, однако, включает в себя не только циркадные
ритмы. В обзоре представлены доказательства эндогенности околонедельного (циркасептанного) ритма, зафикси�
рованного у одноклеточных и на ранних стадиях жизни человека. Как их можно использовать для дальнейшей оп�
тимизации сроков лечения, показано на нескольких примерах, в частности, в отношении лечения рака.

Ключевые слова: хронобиология, циркадные ритмы, гены синхронизации, супрахиазматические ядра, циркасептан�
ные ритмы

Introduction

Many years have passed since the time when cir-
cadian rhythms were referred to as Halberg's paranoia
by his department head. Even before a molecular basis

responsible for their manifestation could be unraveled,
the study of circadian rhythms and chronobiology more
generally had already made seminal inroads to docu-
ment their critical importance at the organismic level,
not only in medicine, but also in veterinarian sciences
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and agriculture as well. Now that cellular and molecu-
lar mechanisms are studied in earnest in relation to all
physiological systems, the bidirectional relationship
between the circadian system and clinical health can no
longer be disputed. To a large extent, the implications of
circadian rhythms in health and disease stem from
crosstalk between clock genes and molecular pathways
related to metabolism and other important physiologi-
cal functions. It is now time to integrate knowledge
gained at the cellular and molecular levels to reap the
benefits at the whole-body level, in terms of screening,
diagnosis, and timed treatment, also aimed at primary
and secondary prevention.

This review offers a glimpse at the development
of the field from a historical perspective. It outlines
some of the major contributions made by Franz Halberg
at a critical time in the history of chronobiology. After
all, «chronobiology» and «circadian» are terms coined
by Halberg that would define the field. We briefly
review the current state of knowledge about the
suprachiasmatic nuclei, responsible for the orchestra-
tion of circadian rhythms. We also briefly review how
clock genes, components of the circadian «clock», inter-
act with each other in an intricate manner generating
oscillations of gene expression. We explore the genetic
basis of periodicities beyond circadian rhythms and ask
whether the suprachiasmatic nuclei may be implicated
in about-weekly (circaseptan) rhythms. Evidence is
offered for the partly endogenous nature of circaseptan
rhythms. Like in the case of circadian rhythms, there are
spontaneous as well as response circaseptan rhythms
that account for the hours (or days) of changing resis-
tance, the foundation of chronotherapy. To conclude,
some clinical applications illustrating the benefit that
can be derived from scheduling treatment in accor-
dance with both circadian and circaseptan rhythms are
documented based on work accomplished with Franz
Halberg.

Historical perspective

Since antiquity, keen observers have reported
cycles in biology. Already in 650 BC, the Greek poet
Archilochus of Paros wrote «Recognize which rhythms
govern man» [1]. During the fourth century,
Androsthenes of Thasos described the opening by day
and closing by night of the leaves of the tamarind tree
as the «nyktitropic movement» [2]. His book, which is
apparently lost but was cited by Theophrastus [3], first
reported on the fact that plants are capable of move-
ment, a characteristic previously thought to be an
attribute only of the animal world. Androsthenes
believed that the daily changes from light to darkness
rather than changes in environmental temperature
were responsible for the leaf movements [2].

In examining the occurrence of critical days
determining a crisis or lysis in the course of illness,

Avicenna (980–1037) found, as Hippocrates and Galen
did before him [1], that the week was an important unit
of biological time, usually elapsing between the start
and resolution of disease [4]. When physiological moni-
toring started in the seventeenth century, William
Harvey (1578–1657) noted that «The movement of
blood occurs constantly in a circular manner and is the
result of the beating of the heart» [5]. It is noteworthy
that not only about-daily cycles were reported this early
on, cycles with periods longer as well as shorter than a
day were also described by then. 

Using instruments of precision to record his bod-
ily functions over 30 years, Santorio Santorio
(1561–1636) introduced quantitative experimental
procedure into his medical research on basal metabo-
lism [6]. Thomas Sydenham (1624–1689) deserves cred-
it for advocating a specific timing in the evening to
administer «Peruvian bark», which active ingredient is
quinine, to alleviate pain [7]. Julien-Joseph Virey
(1775–1846) was first to write a doctoral thesis in med-
icine devoted to biological rhythms [8]. Jean-Jacques
d'Ortous de Mairan (1678–1771) reported that the
«sensitive» heliotrope plant still opened its leaves dur-
ing the day and folded them during the night after he
moved it to a place where sunlight could not reach it [9],
a finding suggesting the persistence of what we now call
circadian rhythms [10].

According to Cambrosio and Keating [11, 12], the
study of biological rhythms started in earnest in the
1920s, as a critical mass of integrated contributions
from several investigators then appeared. The mere
description of periodicities became complemented by
analyses of their structure and the emergence of possi-
ble underlying mechanisms that recognized the partly
endogenous nature of rhythms. Erwin Bünning deserves
credit for his interpretation of de Mairan's finding from
a «clock» viewpoint [13]. 

The study of rhythms also became institutional-
ized around that time. The Internationale Gesellschaft
für biologische Rhythmusforschung, which was initiat-
ed in 1937 in Ronneby, Sweden, later became known as
the Society for Biological Rhythms (SBR). Arthur Jores,
who was one of the organizers of the SBR foundation
meeting, and who later became president of the Society,
was a physician interested primarily in practical aspects
of rhythms from a therapeutic perspective. While he
still viewed rhythms as being exogenous, the endoge-
nous nature of rhythms, essential for the development
of a scientific discipline in its own right, was only con-
sidered by the two biologists present at the meeting.
The tenth conference of the Society was held in 1971,
for the first time in North America, in Little Rock
(Arkansas, USA), when it officially became the
International Society for Chronobiology (ISC). 

Until 1960, the SBR remained primarily
European with a strong interest in medicine. The year
1960 is considered a turning point in the history of



chronobiology in view of the Symposium on Biological
Clocks held in Cold Spring Harbor [14], organized by
Pittendrigh with Aschoff, Bünning, and Bruce. It was the
culmination of growing research on rhythms in the USA
starting in the 1950s essentially centered on circadian
rhythms in a biological rather than medical perspective. 

On the medical side, Franz Halberg's participa-
tion at the meeting emphasized the temporal coordi-
nation of physiologic functions. He was among the
first American researchers who attended the fourth
SBR meeting held in Basel in 1953. He was to play a
critical role in the transformation of the SBR into the
ISC. In 1967, Jores had named Halberg as his succes-
sor to the presidency of the SBR. At the next meeting
in 1971, the now ISC explicitly adopted a disciplinary
approach to the study of rhythms, and in 1979, at the
14th Congress, the statement was formally made that
«chronobiology should become an academic disci-
pline in its own right», and voted on as part of the
Society's constitution.

In the years following Cold Spring Harbor
(1960), the dichotomy between the medical and biolog-
ical approaches sharpened. Pittendrigh considered that
rhythms should be studied within the scope of their
original scientific discipline, focusing exclusively on
biological aspects of rhythms and their «clock» mecha-
nism modeled by self-sustaining oscillators. By contrast,
Halberg took a multidisciplinary approach, including
problems of growth, development, and senescence of
interest to pediatricians and gerontologists within the
scope of chronobiology, which he viewed as an integrat-
ed discipline like genetics. 

By 1950, Halberg had uncovered the circadian
adrenal cycle and identified the adrenal as an
anatomical entity, with known biochemical factors,
capable of certain effects of a physiological nature,
namely the depression of blood eosinophil counts
[15]. He introduced quantitative methods to study
rhythms from a statistical viewpoint. His cosinor
method [16] made possible the microscopic analysis
of rhythmic phenomena with broad applications in
all fields of medicine and biology more generally.
Franz Halberg is regarded by many scientists as the
father of modern chronobiology and as its undisput-
ed leader, particularly as it related to biomedical
research and therapy [17]. He served for more than
10 years as president of the SBR, and for another 15
years as president of the ISC. During his tenure and
thereafter, numerous scientists trained in his labora-
tory in Minnesota. He served as editor-in-chief of
Chronobiologia, the official journal of the ISC pub-
lished between 1974 and 1994.

Additional information related to the historical
development of chronobiologiy and its later extension
to chronomics can be found in two autobiographical
records [18, 19] and in a review of his contributions to
the chronobiology of nutrition [20]. 

Early Studies of Franz Halberg 
That Led to The Discipline

of Chronobiology

As noted earlier in this journal [21], Franz
Halberg was assigned to work at Harvard's Peter Bent
Brigham Hospital with George W. Thorn when he
immigrated from post WW II Europe in 1948 on a fel-
lowship from the World Health Organization. His task
was to assess the validity of the epinephrine test by
injecting mice with various compounds to evaluate pos-
sible corticoid activity based on their ability to cause a
drop in eosinophil counts. Epinephrine presumably
failed to cause the usual drop in blood eosinophil
counts in patients with Addison's disease or other con-
ditions of adrenal insufficiency due to deficient secre-
tion of cortisone-like hormones from the adrenal cor-
tex. The task was difficult and the results confusing
because eosinophil counts varied too much. As a result,
Halberg's fellowship was not renewed. At his farewell
from Harvard in 1949, Thorn told him that he admired
Halberg's sticking to his guns, yet it could not be that
he was right while everyone else in the department was
wrong. A year later, as he joined the University of
Minnesota, however, Franz was proved right. He found
that the pattern of variability in eosinophil counts was
predictable, dropping from high counts in the morning
to low counts in the evening [22, 23], the about-daily
variation also present in humans [24]. By 1950, hor-
mones from the adrenal such as cortisol were known to
lower blood eosinophil counts.

In patients without working adrenal glands,
blood eosinophil counts did not change predictably
in a 24-hour cycle, indicating that adrenal hormones
accounted for the cyclic change in eosinophil counts.
The adrenal cycle had thus been found and later
confirmed [25].

Halberg went on to show that environmental
changes in the lighting regimen synchronized the about
24-hour rhythm in blood eosinophil counts (and other
physiological variables), and that the light information
was transmitted to the hypothalamus through the eyes.
Rectal temperature measured around the clock in mice
that were born anophthalmic and in blinded mice cycled
with a period that was slightly but statistically significant-
ly shorter than 24 hours, whereas it was 24-hour syn-
chronized in control sham-operated mice [22, 25]. These
seminal experiments showing the persistence of an about
24-hour rhythm in blinded mice demonstrated that the
cycles were not just patterns of predictable change, they
were internally run rhythms of the body, kept in step by
environmental cycles. They constitute a key turning point
when Halberg's interest shifted from the study of hor-
mones to the study of the cycles themselves. They mark
the beginning of chronobiology as a discipline in its own
right, for which Halberg provided new concepts, methods,
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facts, mechanisms and applications, thereby replacing the
limiting view of homeostasis by that of a partly built-in
spectral structure in health. The terms chronobiology
(from Greek «chronos», time, «bios», life, and «logos», sci-
ence) and circadian (from Latin «circa», about, and «dies»,
day) were coined by him [15, 26].

The Suprachiasmatic Nuclei

Evidence accumulated over the past five decades
indicates that the suprachiasmatic nuclei (SCN) of the
anterior hypothalamus are the site of the circadian pace-
maker in mammals. The SCN, situated directly above the
optic chiasm, contain an autonomous circadian clock
that maintains rhythmicity when isolated in vivo, when
isolated in vitro, or when used in transplantation [27].
Early lesion studies showed ascending monoamine path-
ways from the brain stem to the limbic system [28, 29].
Follow-up work on pineal monoamine metabolism led to
visual pathways controlling pineal biosynthetic activity
[30–32]. The retinohypothalamic tract (RHT) was iden-
tified as a novel bilateral projection to the hypothalamus

in rodents by injecting 3H-amino acids into the eye [33,
34]. Studies aimed at understanding how light and the
circadian clock influenced neuroendocrine function also
led to visual pathways to the hypothalamus [35]. The per-
ception of light by the circadian system through intrinsi-
cally photosensitive retinal ganglion cells, however, is
independent of the visual pathways responsible for visu-
ally-guided behavior [27]. These studies suggested that
lesioning of the SCN would lead to free-running circadi-
an rhythms. The fact that arrhythmicity was observed led
to the conclusion that the SCN (or a nucleus near it)
were a necessary component of the central circadian
oscillator [36, 37]. The large-amplitude circadian rhythm
of melatonin production is now used most extensively as
a reliable marker (output) of the circadian clock that is
generated by the SCN [27]. 

Mathematical analysis of activity and water
drinking data from SCN-lesioned hamsters showed the
presence of about 12-hour and 8-hour periodicities,
suggesting that the SCN may be composed of popula-
tions of oscillators to coordinate the activity of a variety
of independent oscillators [38]. Around the same time,

Figure 1. Persisting circadian rhythmicity after removal of the SCN. Circadian pattern of core temperature of Fischer
rats after unilateral (U) or bilateral (B) SCN lesioning, or sham operation (S). I. Data stacked over idealized 24�hour day
illustrates rhythm with reduced amplitude and phase advance. II. Illustrative record indicating that rhythm is not read�
ily discernable to the naked eye after bilateral lesioning of the SCN. Note amplification of circadian rhythm in unilat�
eral SCN lesioned rats. Summary by cosinor (polar plot) for all animals documents statistical significance of circadian
rhythm in all three groups. III. Free�running period in continuous dim light averages about 24.8 hours in S or U rats,
but varies greatly in B rats, averaging about 24 hours. © Halberg Chronobiology Center



bilateral lesioning of the SCN in inbred Fischer rats,
carried out at Halberg's laboratory at the University of
Minnesota, showed that the circadian rhythm in
telemetered core body temperature persisted in
LD12:12, albeit with a small amplitude and an earlier
phase [39–41], Figure 1. Persistence of the circadian
rhythmicity of the 3H-TdR incorporation into DNA of
different organs (tongue, esophagus, gastric stomach,
and colon) and of the mitotic index of the corneal
epithelium of BD2F1 female mice after bilateral lesion of
the SCN was further demonstrated [42], Figure 2. The
most consistent result was a phase advance in the
rhythms in cell proliferation in the tongue, esophagus,
gastric stomach, colon, and corneal epithelium, and a
reduction in the circadian amplitude detected in the
tongue, esophagus, and corneal epithelium. Water
drinking was the only variable for which a circadian
rhythm could not be demonstrated [43]. Later, bilateral
lesioning of the SCN was reported to eliminate the
group circadian rhythm of systolic blood pressure but
not of heart rate in rats [44].

Using in vitro hypothalamic slice preparations,
neurophysiology studies showed rhythms in the firing

rate of SCN neurons in culture [45, 46], thereby provid-
ing evidence for the autonomy of the SCN circadian
pacemaker [27]. Further evidence was provided by
showing in hamsters that transplantation of fetal hypo-
thalamic tissue containing the SCN can restore behav-
ioral rhythmicity in adults previously made arrhythmic
by destruction of the SCN [47, 48]. It is now known that
individual SCN neurons in culture can maintain inde-
pendent free-running rhythms of firing rate [49]. 

The SCN contains multiple circadian oscillators,
which synchronize with each other via several neuro-
transmitters. The SCN is a network structure composed
of multiple types of gamma-amino butyric acid (GABA)-
ergic neurons and glial cells. Although individual SCN
neurons have intracellular molecular machinery of cir-
cadian clock and the ability to oscillate cell-
autonomously, inter-neuronal communications among
these neurons are essential for the circadian pacemak-
ing of the SCN [50]. Gamma-amino butyric acid
(GABA), an inhibitory neurotransmitter, is expressed in
almost all SCN neurons. Excitatory and inhibitory
effects of GABA may depend on intracellular Cl- con-
centration, in which several factors such as day length,
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Figure 2. Persistence of circadian rhythm of 3H�TdR incorporation into DNA of different organs and of mitotic index of
corneal epithelium of BD2F1 female mice after bilateral lesioning of the SCN (I�VI). While a circadian rhythm cannot
be validated for water drinking in these animals, it is statistically significant for the drinking of 5% ethanol (VII and
VIII). © Halberg Chronobiology Center
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time of day, development, and region in the SCN may be
involved [51]. It has been suggested that AVP neurons
may play a critical role in the network mechanism of
the central circadian pacemaker of the SCN [52].

Interestingly, in SCN lesioning studies of cell pro-
liferation in the gut [42], the circadian amplitude of 3H-
TdR incorporation into DNA of the stomach, colon, and
serum corticosterone was increased rather than
decreased, suggesting that the SCN may represent but
one cog in the overall 'clock' mechanism, however
important it may be. The transcriptional/posttranscrip-
tional delayed feedback loop reportedly cannot account
for all circadian rhythms in cells [53]. A complementary
non-transcriptional-transcriptional coordination mech-
anism may interact with the classical transcriptional-
transcriptional one, involving NAD in their interaction
[54]. The intact food anticipatory activity in SCN-ablated
rodents or those lacking functional circadian oscillator
genes [55] points to yet unidentified genes and circuits
in eating pattern determination. Multiple lesion studies
at the level of hypothalamic, corticolimbic, and brain-
stem structures and adrenals suggest that circadian
coordination may be achieved by means of a distributed,
decentralized system of oscillators, with contribution in
gain setting by the metabolic hormones ghrelin and lep-
tin [56]. The relative independence of the gut from the
SCN deserves further investigation.

The SCN may also be involved in the coordina-
tion of other-than-circadian rhythms, as suggested by a
circaseptan (about-weekly) amplification in dentin
accretion after ablation of the SCN in Wistar rats [57].
Another interesting observation in Halberg's studies is
the amplification of the circadian rhythm in telemetered
core temperature of inbred Fischer rats after unilateral
lesioning of the SCN, as compared to sham-operated
controls [58], Figure 1. This finding was later corroborat-
ed in retrospective analyses of data on hamsters [59].

Clock Genes 

Once the endogenicity of circadian rhythms
became evident from their persistence in constant con-
ditions, when they assumed a period that differed slight-
ly but statistically significantly from exactly 24 hours, it
was time to unravel their molecular and cellular bases.
Evidence for a genetic basis of circadian rhythms at the
molecular level in higher eukaryotes started when
mutation screening in Drosophila melanogaster led to
the discovery in 1971 that alterations of the period (Per)
gene changed the periodicity of locomotor activity [60].
Mutant flies with atypically short or long periods of
their circadian behavior led to the subsequent cloning of
the Period gene as the molecular target of these muta-
tions. It was then realized that changes in the encoded
proteins could make the clock run faster, or slower or
not at all. It also became apparent that the key action of
the encoded proteins was to inhibit the expression of

their cognate genes. Further studies elucidated more
genes that altered the timing of behavior, and homo-
logues in mammals were subsequently discovered
[61–64]. These studies led to a model consisting of posi-
tive and negative autoregulatory feedback loops of tran-
scription and translation. To cycle across the different
stages, from gene activation and protein synthesis to
intracellular transport and protein degradation takes
approximately 24 hours. Even though the molecular
components may differ across species, the basic princi-
ples underlying the mechanism is conserved [65].

One important feature is the so-called PAS (Per-
Arnt-Sim) interaction domains of Per and other clock
genes. A PAS domain is a protein domain found in all
kingdoms of life that acts as a molecular sensor, where-
by small molecules and other proteins associate via
binding of the PAS domain. This sensing capability of
the PAS domain is a key structural motif involved in
protein-protein interactions of the circadian clock. In
mammals, the circadian clock begins when light acti-
vates BMAL1 and CLOCK to bind via their PAS
domains. That activator complex regulates Per1, Per2,
and Per3, which all have PAS domains that are used to
bind to cryptochromes 1 and 2 (CRY 1,2 family) [65].

The development of real-time reporter genes in
which circadian regulatory sequences are coupled to
bioluminescent or fluorescent proteins led to major
advances in analyzing circadian gene expression, and
allowed the study of the SCN clock mechanism as it
progresses through real time. Applied to peripheral tis-
sues and organs, it was found that circadian genes are
not only expressed in such cultures, their expression is
also circadian periodic, indicating that the transcrip-
tional clock is active not only in the SCN, but in almost
every cell of the organism. Circadian gene expression is
sustained at the single cell level, but in the absence of
external synchronization (in vitro), the phases of indi-
vidual cells gradually disperse and the population
rhythm weakens. The role of the SCN, therefore, is not
to impose rhythms upon the rest of the brain and inter-
nal organs. Rather, it is to coordinate the activity of the
intrinsic transcriptional/post-translational clocks dis-
tributed across innumerable cells in all of the major
organs and tissues [65].

It was later discovered that some positive factors
are rhythmically expressed due to the influence of their
targets. Rev�Erbα was identified as a highly rhythmic cir-
cadian output gene driven by CLOCK/BMAL1 that
encodes an orphan nuclear receptor that, in turn,
inhibits Bmal1 expression via its retinoic acid receptor-
related orphan receptors response elements (RORE)
regulatory sequences, thus showing how output of the
«core» loop becomes its input [66]. A second circadian-
controlled gene, Rora, was found to act as a positive fac-
tor to Bmal1, opposing the effect of Rev�Erbα at the
RORE. Mice lacking both Rev�Erbα and the closely
related Rev�Erbα have major disruptions of metabolic



and behavioral rhythms [67]. Consequently, definition
of the «core» clockwork progressively loses its focus as a
network of transcriptional interactions develops [65].
Additional transcription factors, Dec-1 and Dec-2, and
an auxiliary loop consisting of Dbp and E4BP4, further
refined the current understanding of the circadian
clock architecture, consisting of inter-nested transcrip-
tional loops [68].

Retinal innervation of the SCN, carried via the
retino-hypothalamic tract (RHT), is the means by
which the transcriptional program of the SCN is syn-
chronized to the environmental light-dark cycle. A sub-
class of retinal ganglion cells (RGCs) expresses
melanopsin that confers upon them intrinsic photore-
ceptivity [69]. These intrinsically photoreceptive RGCs
(iPRGCs) are sufficient for circadian entrainment of the
SCN. The principal neurotransmitter of RGCs is gluta-
mate. Entrainment by photic-induction of Per expres-
sion is equally applicable to both diurnal and nocturnal
species because the cycle of Per expression in the SCN is
the same in both, regardless of the animal's behavioral
habits [70]. Across the body, other mechanisms are
involved in the coordination of circadian rhythms,
notably the feeding schedule, endocrine signals (e.g.,
corticosteroid hormones from the adrenal glands), and
information stemming from the autonomic nervous sys-
tem (e. g., body temperature) [65].

In addition to the core feedback loops, between 5
and 20% of the local transcriptome has been found to
be subject to circadian modulation. In the liver, the cir-
cadian modulation is most pronounced for transcripts
involved in metabolic and signaling pathways [71] as
well as cell cycle regulators. The enzymatic components
of the cell rather than structural genes are clock-regu-
lated. Some of the rhythmic targets of the core loop fac-
tors, such as PPAR and HNF4a, are themselves tran-
scriptional regulators. Cues that entrain the core clock,
such as corticosteroids can also act upon clock-con-
trolled genes directly. The transcriptome can therefore
be viewed as a resonant network [65].

Post-translational mechanisms coordinating
clock outputs implicate the localization and stability of
clock proteins. Phosphorylation and ubiquitinylation
are involved in supporting rhythmicity and setting the
clock's period [72]. Cellular metabolism is intrinsically
rhythmic, as observed in mouse liver in vivo [73] and in
isolated mammalian cells in vitro [74]. This means that
the cell's metabolic state can directly regulate tran-
scription factor activity, as seen in vitro in the case of
the redox state of nicotinamide adenine dinucleotide
(NAD and NADP) cofactors [75]. While circadian cycles
of gene expression are generally viewed as driving cel-
lular rhythms of metabolism, there is also evidence for
circadian cycles of metabolism to drive rhythms of gene
expression [76].

Intercellular signaling is a critical aspect not
only in synchronizing the SCN cellular transcriptional

clocks but also in maintaining them. Altering electrical
communication across the circuit may affect the tran-
scriptional clockwork. The consequently reduced secre-
tion of neuropeptides (AVP, VIP and GRP) across the
SCN attenuates intracellular cues [77]. The core loop
usually drives the circadian rhythms of action potential
firing, cAMP and Ca2+ concentrations, neuropeptide
synthesis and secretion. Non-transcriptional outputs of
the core loop within the SCN neuron are thus also its
sustaining inputs, acting both within a neuron and
between neurons [65]. Both transcriptional and cytoso-
lic components are mutually dependent and act in con-
cert [65]. The fact that a self-sustained rhythm in glu-
cose uptake by embryonic stem cells prior to and
following differentiation implies the existence of
intrinsic timekeeping that is not reliant on any known
transcriptional clock mechanism [78].

In order to study non-transcriptional mecha-
nisms of circadian rhythms in mammals, human red
blood cells were used, which have no nucleus (or DNA)
and therefore cannot perform transcription [79]. Results
showed that transcription is not required for circadian
oscillations, and that non-transcriptional events may be
sufficient to sustain cellular circadian rhythms, since
peroxiredoxins, highly conserved antioxidant proteins,
underwent entrainable and temperature-compensated
24-hour redox cycles, persisting for several days under
constant conditions. The concentrations of several cellu-
lar metabolites (ATP, NADH, NADPH) also appeared to
be rhythmically modulated [79].

Beyond Circadian Rhythms

Unicellular organisms represent an attractive
model to study time structure beyond circadian
rhythms. Early on [80–87], it was known that unicells
(e.g., Acetabularia, Gonyaulax, Euglena, Paramecium, and
Escherichia coli) exhibited overt persisting circadian
rhythms in variables such as cell division, lumines-
cence, pattern formation, and enzymatic activity,
including NADH and NADPH [86]. In Euglena, tempo-
ral differentiation was documented [86], a large number
of diverse behavioral, physiological, and biochemical
activities being partitioned in time, thus providing
dimensions for both environmental adaptation and,
functional integration in time. In Acetabularia mediter�
ranea, circadian rhythms of chloroplast movement [88,
89] and oxygen production [90, 91] persisted even when
the nucleus of the cell was removed. 

One spectral component that has been particu-
larly investigated in unicells is the about-weekly (cir-
caseptan) variation. Following the study design of
Hans-Georg Schweiger, two cultures of Gonyaulax
polyedra were grown on almost opposite lighting regi-
mens, then mixed and released into continuous light
(LL). Not only did the light emitted from the mixed cul-
ture differ from the arithmetic mean of the two parent
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cultures (also kept in LL), the circadian peaks attribut-
able to the two cultures tending to merge, an indication
of circadian cellular communication [92], a circaseptan
modulation of the circadian amplitude was also detect-
ed in the cultures that had not undergone an LD phase
shift and in some of the mixed cultures, but not in the
shifted cultures [93].

Oxygen production, basal and apical chloroplast
migration and the electrical potential of Acetabularia
acetabulum measured in Hans-Georg Schweiger's labo-
ratory under LD conditions before being released in LL
show not only prominent circadian rhythms but also
circaseptans, which are amplified by the change in
lighting conditions [94]. The circaseptan variation is
even more prominent than the circadian rhythm in the
case of electrical potential in LL, Figure 3. Such a cir-
caseptan amplification after exposure to a single stimu-
lus had been documented earlier in relation to testos-
terone self-administration [95], organ transplantation
[96], balneotherapy [97], and human birth [98, 99].

Data on Acetabularia's light transmission from
Woolum's lab [100] showed that circaseptan as well as
circadian rhythms persisted after enucleation. Results
on the first 6 cells indicated that, as compared to the
controls, the enucleated cells had a numerically longer
circadian period (26.8±0.5 vs. 25.2±0.5 hours; P=0.124)
but a shorter circaseptan period (6.3±0.3 vs. 7.7±0.6
days; P=0.085). Enucleation was also associated with a
decrease in the circaseptan-to-circadian amplitude ratio
(20.6±3.4 vs. 41.7±3.0%; P=0.018). These results were
confirmed after additional cells were similarly investi-
gated [100]. They suggest that the biologic week and day
may be subtractively coupled, at least for this particular
variable in this unicellular organism.

The SCN does not appear to be necessary for cir-
caseptans to be discernible in dentin formation of
Wistar rats, whether they are monitored in LL without
surgery, before or after sham-operation or SCN ablation
[57]. In these data, the circaseptan variation was more
prominent than the circadian rhythm, the circaseptan-
to-circadian amplitude ratio assuming values of 2.11,
1.40, and 2.85, respectively. Circaseptans remained
prominent after SCN lesioning, suggesting their genet-
ic basis. Interestingly, circaseptans were more promi-
nently expressed in dentin formation, a variable repre-
senting growth, than in locomotor activity monitored
concomitantly [57, 101]. 

A compilation of processes for which about-
weekly and half-weekly variations were demonstrated
with statistical significance indicates that they primari-
ly relate to growth, regeneration, and repair [102]. They
are found in organisms that have been on Earth for a
very long time, suggesting that their manifestation early
in human life [98, 99], and perhaps also early in evolu-
tion [100–102] may illustrate the parallel often made
between ontogeny and phylogeny. The partly built-in
nature of circaseptans and circasemiseptans related to

growth and regeneration is substantiated by their
demonstration in isolation from society [103, 104] and
by their free-running from an exact socio-ecologic
counterpart [95].

Hours of Changing Resistance

Apart from the spontaneous rhythms, the
response to a given stimulus also changes predictably
depending on when it is administered. Timing can be as
important as dosing since circadian (and other rhythm)
stage determines the chances of life versus death in
response to the same stimulus, as demonstrated for
many drugs under the environmental conditions avail-
able in a modern laboratory, with standardized lighting,
environmental temperature and humidity, and noise
[105]. Circadian rhythms are not only responsible for
the organization in time of the various physiological
processes, they also play a critical role in health and dis-
ease [106]. They are involved in sleep disorders, respira-
tory diseases, cancer, cardiovascular diseases, neurode-
generative diseases, metabolic disorders, and infectious
diseases [107]. In each case, physiological markers
underlying each condition are circadian periodic,
resulting in a circadian susceptibility-resistance stage-
dependence to injury and a circadian stage-dependent
response to treatment.

The hours of changing resistance constitute the
foundation of chronopharmacology and chronotherapy.
The tolerance of seven different anticancer drugs was
tested in our laboratory on 5,266 rodents in 35 studies,
yielding therapeutic gains that led to the doubling of sur-

Figure 3. Electrical potential of Acetabularia Acetabulum.
Signal averaged data of cells kept in LD12:12 after release
into LL [94]. Both circadian and circaseptan components
are documented with statistical significance. © Halberg
Chronobiology Center



vival rate [108]. Doubling of the 2-year disease-free sur-
vival was similarly achieved for patients with oral cancer
irradiated at the time of their peak tumor temperature
[109, 110]. Apart from cancer [111], the merits of
chronotherapy have also been documented in relation to
respiratory diseases [112–114], cardiovascular diseases
[115–119], neurodegenerative diseases [120], metabolic
disorders [121, 122], and infectious diseases [123–125]. 

Studies in the clinic usually compare outcomes
from patients treated in the morning or in the evening.
A few chronobiological investigations used a 6-time-
point approach that enabled the assessment of treat-
ment effects of the circadian amplitude and phase in
addition to the mean value. Recent work is considering
a complementary approach that attempts to «fix the
clock» by realigning a misaligned circadian system.
Exposure to bright light in the morning and melatonin
administration before bedtime [126, 127] are two main
avenues to restore a disrupted circadian rhythm that
have met with some success in relation to sleep disor-
ders [128–132], depression [133–135], and neurode-
generative conditions [136–139]. Because sleep has a
strong circadian component, many disease conditions
are associated with a decrease in sleep quality.
Improving sleep by means of bright light and melatonin
intervention thus also helps improve patients with dif-
ferent disease conditions. Now that clock genes have
been related to human health and disease, researchers

are searching for new therapeutic
modalities that target clock genes
directly [140, 141].

Circaseptan rhythms can
also be exploited to optimize
treatment by timing. In studies of
the immunomodulation of malig-
nant growth in LOU rats bearing
an immunocytoma, the effect of a
7-day pre-treatment with lenti-
nan or saline was compared. The
growth of the malignant tumor
was inhibited and survival time
was lengthened when this
immunomodulatory was admin-
istered during the daily light
span in doses varying sinusoidal-
ly from day to day with a period
of 7 days [142]. Just as the circadi-
an rhythm in RNA, DNA, phos-
pholipids and mitoses prompted
the circadian chronotherapy of
cancer, merit of a circaseptan
chronotherapy is supported by
the presence of sharp peaks
occurring about every 7 days in
DNA labelling and mitotic activ-
ity during the regeneration of the
kidney after unilateral nephrec-

tomy or contralateral ischemia [143]. A circaseptan
response to immunization has also been reported in
mice [144]. Moreover, cyclosporine chronotherapy of
pancreas-allotransplanted rats suggests that beyond the
circadian stage-dependence of equal daily doses further
gain in graft function can be obtained from doses vary-
ing from day to day according to a weekly periodicity
[145]. Perhaps the more striking results relate to the
time dependence of the  β-ATP peak of different tumor
cells in vitro gauging overall metabolism [146]. Gains to
be derived from modulating the administration of
radiotherapy according to a weekly schedule is suggest-
ed by the large circaseptan-over-circadian prominence
of the time dependence of the β-ATP peak, as illustrat-
ed in Figure 4. 

Concluding Remarks

Finding ways to restore a healthy circadian sys-
tem by manipulating its endogenous component is a
step forward. The procedures currently available to fol-
low this approach are not invariably amenable to
implementation in clinical studies. Future chronobio-
logic studies, however, ought to overcome the limitation
of being restricted to comparing morning to evening
dosing. As our work in the field of blood pressure has
extensively demonstrated, blood pressure disorders can
greatly differ in their presentation from one patient to
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Figure 4. Larger circaseptan than circadian amplitude of tumor cell growth (left),
documented in four kinds of cells (C3H�MA grown from a murine mammary
adenocarcinoma, B14 cells from a Chinese hamster, 9L glioma cells of a rat, and a
monolayer culture of mouse L1210 leukemia cells). Both components affect out�
come: irradiation at combined circadian�circaseptan stage of maximal ββ�ATP
(right) results in higher tumor kill (middle). © Halberg Chronobiology Center
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another. Diabetic patients with autonomic nervous dys-
function may be more likely to have a reverse circadian
variation of their blood pressure but not of their heart
rate [147], whereas patients at a higher risk of cerebral
ischemia may have an amplified circadian variation of
their blood pressure [148, 149]. Elevated values of blood
pressure will thus occur at night or during the daytime,
respectively. The optimal time to administer anti-hyper-
tensive medication should thus be adjusted accordingly.
In other words, chronotherapy needs to take the
chronodiagnosis into consideration [108]. As one clini-
cal study already showed, the optimal time to adminis-
ter a given anti-hypertensive drug combination differs
from one patient to another, thus clearly indicating the
merit of personalized chronotherapy [119].

The idea of adjusting the treatment to individual
needs emerged as molecular biology tools became avail-
able to provide rapid and accurate diagnostic assays
[150]. The profile of metabolites present in urine before
drugs are administered may also help identify whether
a patient is a good candidate for a drug. Pre-dose meta-
bolic profiles can predict how a patient might respond
to a particular drug, using pharmacometabonomics
[151]. Not only can the use of biomarkers for personal-
ized medicine help reduce drug risks [152], the danger
of relying on averages that can hide individual differ-
ences in clinical trials has also been pointed out [153].
In the ATLANTIS B trial, the outcome of stroke patients
treated 3 to 5 hours after the onset of symptoms showed
no difference between t-PA treatment or placebo col-

lectively, but found a benefit for one-third of the
patients who had the least risk of hemorrhage [153].

The ubiquitous, broad time structures that have
repeatedly been shown to make the difference between
life and death in the experimental laboratory [108] or
between the success or failure of a given treatment in
the clinic [109], however, remains mostly missing from
current clinical practice. The recent development of
several technologies for (1) monitoring health status,
(2) screening for disease conditions as well as for risk
elevation, (3) administering treatment scheduled
according to bodily rhythms, and (4) continued surveil-
lance of the patient's response to treatment should
facilitate the implementation of a chronobiologic
approach in everyday healthcare. Data on physiological
variables acquired by personal long-term ambulatory
monitors, analyzed statistically and interpreted chrono-
biologically in the light of time-specified reference val-
ues derived from clinically healthy peers can guide the
programmed scheduling of treatment. Portable devices
such as pacemakers, defibrillators, and drug pumps can
be further programmed to account for circadian (and
other) rhythms. Parameter tests [154] and self-starting
cumulative sum (CUSUM) control charts [155] are
tools available for personalized chronotheranostics,
using N-of-1 designs [156]. All these technologies could
lead to marker rhythms-guided chronotherapy adjusted
for the chronodiagnosis of each individual patient.

Support: Halberg Chronobiology Fund
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